Most of my preprints can be found on arXiv.org and ResearchGate. My articles can also be tracked on Google Scholar and ORCID.

Preprints:


  1. Structure-preserving approximation of the non-isothermal Cahn-Hilliard system
    with Mária Lukácová-Medvidová, Dennis Schumann
    Links: Preprint
  2. A structure-preserving numerical method for quasi-incompressible Navier–Stokes–Maxwell–Stefan systems
    with Ansgar Jüngel, Mária Lukácová-Medvidová
    Links: Preprint
  3. Analysis and structure-preserving approximation of a Cahn-Hilliard-Forchheimer system with solution-dependent mass and volume source
    with Marvin Fritz
    Links: Preprint
  4. A simple, fully-discrete, unconditionally energy-stable method for the two-phase Navier-Stokes Cahn-Hilliard model with arbitrary density ratios
    with Marco F. P. ten Eikelder
    Links: Preprint
  5. Analysis and discretization of the Ohta-Kawasaki equation with forcing and degenerate mobility
    with Marvin Fritz
    Links: Preprint
  6. Fundamentals of the Oldroyd-B model revisited: Tensorial vs. vectorial theory
    with Joydip Chaudhuri, Burkhard Dünweg and Mária Lukácová-Medvidová
    Links: Preprint

Peer-Reviewed Journal Articles:


  1. Error analysis for a second order approximation of a viscoelastic phase separation model
    with Herbert Egger, Oliver Habrich, Mária Lukácová-Medvidová
    Numerische Mathematik (2025)
    Links: Preprint & Journal

  2. Robust a posteriori error control for the Allen-Cahn equation with variable mobility
    with Jan Giesselmann and Mária Lukácová-Medvidová
    SIAM Journal on Numerical Analysis (2025)
    Links: Preprint & Journal

  3. Structure-preserving approximation of the Cahn-Hilliard-Biot system
    with Marvin Fritz
    Numerical Methods for Partial Differential Equations (2024)
    Links: Preprint & Journal

  4. A second-order structure-preserving discretization for the Cahn-Hilliard/Allen-Cahn system with cross-kinetic coupling
    with Herbert Egger, Oliver Habrich
    Applied Numerical Mathematics (2024)
    Links: Preprint & Journal

  5. Variational approximation for a non-isothermal coupled phase-field system: Structure-preservation & Nonlinear stability
    with Oliver Habrich, Timileyin David Oyedeji, Yangyiwei Yang, Bai-Xiang Xu
    Computational Methods in Applied Mathematics (2024)
    Links: Preprint & Journal

  6. On existence, uniqueness and stability of solutions to Cahn-Hilliard/Allen-Cahn systems with cross-kinetic coupling
    with Herbert Egger, Timileyin David Oyedeji, Yangyiwei Yang and Bai-Xiang Xu
    Nonlinear Analysis: Real World Applications (2023)
    Links: Preprint & Journal

  7. A second-order fully-balanced structure-preserving variational discretization scheme for the Cahn-Hilliard Navier-Stokes system
    with Herbert Egger, Oliver Habrich and Mária Lukácová-Medvidová
    Mathematical Models and Methods in Applied Sciences (M3AS) (2023)
    Links: Preprint & Journal

  8. On uniqueness and stable estimation of multiple parameters in the Cahn-Hilliard equation
    with Herbert Egger, Oliver Habrich
    Inverse Probleme (2023)
    Links: Preprint & Journal

  9. Stability and discretization error analysis for the Cahn-Hilliard system via relative energy estimates
    with Herbert Egger, Oliver Habrich and Mária Lukácová-Medvidová
    ESAIM: Mathematical Modelling and Numerical Analysis (2023)
    Links: Preprint & Journal

  10. Existence and weak-strong uniqueness for global weak solutions for the viscoelastic phase separation model in three space dimensions
    Discrete and Continuous Dynamical Systems (2023)
    Links: Preprint & Journal

  11. Relative energy and weak-strong uniqueness of the two-phase viscoelastic phase separation model
    with Mária Lukácová-Medvidová
    Zeitschrift für Angewandte Mathematik und Mechanik (2022)
    Links: Preprint & Journal

  12. Global existence of weak solutions to viscoelastic phase separation: Part II Degenerate Case
    with Mária Lukácová-Medvidová
    Nonlinearity (2022)
    Links: Preprint & Journal

  13. Global existence of weak solutions to viscoelastic phase separation: Part I Regular Case
    with Mária Lukácová-Medvidová
    Nonlinearity (2022)
    Links: Preprint & Journal

  14. Existence, regularity and weak-strong uniqueness for three-dimensional Peterlin viscoelastic model
    with Yong Lu and Mária Lukácová-Medvidová
    Communications in Mathematical Sciences (2022)
    Links: Preprint & Journal

  15. Systematic derivation of hydrodynamic equations for viscoelastic phase separation
    with Burkhard Dünweg, Herbert Egger, Oliver Habrich, Mária Lukácová-Medvidová and Dominic Spiller
    Journal of Physics: Condensed Matter (2021)
    Links: Preprint & Journal

  16. Analysis of a viscoelastic phase separation model
    with Burkhard Dünweg, Herbert Egger, Oliver Habrich, Mária Lukácová-Medvidová and Dominic Spiller
    Journal of Physics: Condensed Matter (2021)
    Links: Preprint & Journal

  17. Modelling cell-cell collision and adhesion with the filament based lamellipodium model
    with Diane Peurichard, Nikolas Sfakianakis and Christian Schmeiser
    Biomath (2018)
    Links: Preprint & Journal

  18. Stability, Convergence, and Sensitivity Analysis of the FBLM and the Corresponding FEM
    with Nikolas Sfakianakis
    Bulletin of Mathematical Biology (2018)
    Links: Preprint & Journal

Peer-Reviewed Proceedings Articles:

  1. Structure-preserving approximation for the non-isothermal Cahn-Hilliard-Navier-Stokes system
    with Dennis Schumann
    Numerical Mathematics and Advanced Applications ENUMATH 2023 (2025)
    Links: Preprint & Journal

  2. Nonisothermal Cahn-Hilliard Navier-Stokes system
    with Dennis Schumann
    Proceedings in Applied Mathematics and Mechanics (2024)
    Links: Preprint & Journal

  3. Chemotaxis and Haptotaxis on Cellular Level
    with Niklas Kolbe and Nikolas Sfakianakis
    HYP 16: Theory, Numerics and Applications of Hyperbolic Problem I (2018)
    Links: Preprint & Journal

Theses:


  • Viscoelastic phase separation: Well-posedness and numerical analysis
    PhD Dissertation, Johannes Gutenberg University Mainz (2022)
  • Numerische Behandlung von zeitgebrochenen Diffusionsgleichungen
    Master’s Thesis, Johannes Gutenberg University Mainz (2017)
  • Mathematische Modellierung von Phosphorylierungssystemen
    Bachelor’s Thesis, Johannes Gutenberg University Mainz (2015)

Current projects/drafts (only on request):


  1. A posteriori existence of strong solutions for the Navier-Stokes equation in 3D with Jan Giesselmann and Tabea Tscherpel, TU Darmstadt
  2. Existence of discrete solutions and optimal errors estimates for quasi-incompressible Navier–Stokes–Maxwell–Stefan systems with Ansgar Jüngel and Mária Lukácová-Medvidová, Tu Vienna/JGU Mainz
  3. Structure-preserving approximations for viscoelastic systems with phase-field dependent energy with Dennis Trautwein, University Regensburg
  4. Structure-preserving approximation for non-isothermal phase-field models in melt flow with Dennis Schumann, JGU Mainz
  5. Modeling and structure-preserving discretization of N-phase incompressible fluid mixtures with arbitrary density ratios with Marco ten Eikelder, TU Darmstadt
  6. Modeling and stable discretisations for Maxwell–Stefan with quasi-incompressible, heat conducting fluids with Patrick Farrell and Mária Lukácová-Medvidová, Oxford/JGU Mainz
  7. Existence and weak-strong uniqueness for non-isothermal phase-field systems with Marvin Fritz, RICAM
  8. Energy-stable H^2 conforming discretisations for the Cahn-Hilliard equation with variable mobility with Marvin Fritz, RICAM

To-Do list (if you are interested just let me know):


  1. Relative energy estimates for non-isothermal phase-field systems including fluid flow
  2. Error estimates for an energy-stable FE discretisation for the Abels-Garcke-Grün model
  3. Comparison between the Abels-Garcke-Grün model and the quasi-incompressible Navier-Stokes-Cahn-Hilliard system
  4. Error estimate for a stable FV scheme for compressible Navier-Stokes
  5. Error estimate for stable FV scheme for cross-diffusion systems
  6. Stable approximations for non-isothermal viscoelastic rate-type fluids with stress diffusion